
Developing intelligent agents on the

Android platform

Jorge Agüero, Miguel Rebollo, Carlos Carrascosa, Vicente Julián
Departamento de sistemas informáticos y computación

Universidad Politécnica de Valencia

Camino de Vera S/N 46022 Valencia (Spain)

{jaguero, mrebollo, carrasco, vinglada}@dsic.upv.es

Abstract

Nowadays, agents may run on different hardware platforms, which is
a useful approach in Ubiquitous Computing in order to achieve intelligent
agents embedded in the environment. This approach can be considered
the vision of an Intelligent Ambient. In this paper, a new agent model
“specially” designed for the recent Android1 Google SDK is presented,
where the Android mobile phone can be considered as a software agent.
This agent model has an approach which is more practical than theoretical
because it uses well-known abstractions which allow the proposed model
to be implemented on different systems. The appearance of Android as
an open system based on Linux has signalled new hope in the implemen-
tation of embedded agents. Finally, the proposed model abstractions used
to design the Android agent have been employed to implement a simple
example which shows the applicability of the proposal.

keywords: Agent architecture, agent model.

1 Introduction

Ubiquitous Computing or Pervasive Computation [12] is a paradigm in which
the technology is virtually invisible to our environment, because it has been
inserted into the ambient with the objective of improving people’s quality of
life, creating an intelligent ambient [7]. In Pervasive Computation, awareness
is becoming common characteristic of our society with the appearance of elec-
tronic devices incorporated into all kinds of fixed or mobile objects (Embedded
system), connected to each other via networks. It is a paradigm in which com-
puting technology becomes virtually invisible as a result of computer artifacts
being embedded in our everyday environment [8].

One approach to implement pervasive computing is to embed intelligent
agents. An intelligent agent is a hardware or (more usually) software-based
computer system which has the following properties: autonomy, social ability,
reactivity and pro-activeness [13]. Embedded-computers containing these agents
are normally referred to as embedded-agents[11]. Each embedded agent is an

1Android is trademark of Open Handset Alliance, of which Google is a member

1



autonomous entity, and it is common for such embedded-agents to have network
connections allowing them to communicate and cooperate with other embedded
agents, as part of a multi-embedded agent system.

The challenge, however, is how to manage and implement the intelligent
mechanisms used for these embedded agents, bearing in mind the limited pro-
cessing power and memory capacity of embedded computational hardware, the
lack of tools for the development of embedded applications and the lack of
standardisation. These challenges and other known problems [9], a remark-
able difference between the conceptual agent model and the implemented, or
expected, agent has been detected. For example, it is widely known that Java
is a language which is frequently used in the development of agents, but the
difference between Java for personal computers (J2SE) and Java embedded de-
vices (J2ME), produces big changes in the implemented agents. This problem
is often solved by adding new middleware layers, but the functionality of the
agent is reduced on many platforms [7].

But now, with the arrival of the SDK Android made by Google as a platform
for the development of embedded applications in mobile phones, a new approach
for implementing embedded intelligent agents has been created. Android is an
open source platform and the development of the applications is made with
a new Java library (Java Android library), which is very similar to Java for
personal computers (J2SE) [3]. Furthermore, the Android Linux Kernel could
possibly be migrated to other platforms or electronic devices, allowing such
agents to be executed in a wide variety of devices.

To sum up, the basic idea is to present an agent model that can be designed
using components or abstractions that can be deployed on any programming
platform, such as the Android SDK, which allows such an agent model to be
implemented. This will demonstrate the feasibility of implementing embedded
agents using these abstractions, reducing the gap between the design of embed-
ded agents and their implementation. The rest of the document is structured
as follows. Section 2 describes the proposed agent model. Section 3 briefly ex-
plains the main components of the Android Platform. Section 4 details agent
implementation in Android. In section 5 a simple example demonstrating the
viability of implementing the model in the Android SDK is shown. Finally, the
conclusions of the present work are expounded in section 6.

2 Agent Meta-Model

The main problem to define a platform-independent agent model is to select
the appropriated concepts that will be included in the model and that will be
used to build the different features and classes of agents. At the moment, there
is a large amount of agent models that provide a high-level description of their
components and their functionalities, but they need to be changed and manu-
ally implemented when applied to specific agent platforms. To define the agent
model presented in this paper, some of the most used and complete agent model
proposals have been studied. The purpose of this study was to extract their com-
mon features and adapt them to the current proposal. In this way, TROPOS[5],
GAIA[14], AUML[4], INGENIAS [10] and AML[6] have been considered. So,
the proposed process allows to do the analysis and design of the system ac-
cording to different well-known methodologies (corresponds to the CIM). Then,

2



the obtained design will be transformed in terms of our proposed meta-model
corresponds to the PIM. The main components and basic concepts employed
in the meta-model are summarized in Table ??. Moreover, the relationships
between these main components are shown in Figure 1. The main components
and basic concepts employed in the meta-model are summarized in Table ??.
This meta-model is called agent-π (agent-PI: agent Platform Independent).

Figure 1: Summarized agent-π meta-model

The highest-level entity to be considered is the agent. At this level, orga-
nizations of a higher order, group rules or behaviour norms, are not taken into
account in this work.

2.1 Agent

An Agent has an identifier and a public name. The Environment is represented
by means of its relationship with the ambient or surroundings, allowing the
definition of input and output ports for communicating with the outside. The
agent’s knowledge base is kept in its Belief set and its Goal set. The agent has
two message queues, Input and Output, to communicate with the outside, and
they temporally store incoming and outcoming messages respectively. Besides
messages, the agent can be aware of event arrival, which is stored in EventQueue.
Lastly, the agent has a State, related its life-cycle and its visibility to other
agents.

With regards to the problem-solving methods, the agent has a set of core
components. -The Capabilities- which represent the know-how of the agent and
follow an event-condition-action scheme. To improve the efficiency of the agent,
Capabilities are grouped into Behaviours that define the roles the agent can
play. By doing so, any Capability related to the current situation can be kept
active (ready), preventing the overloading of agent.

3



2.2 Behaviours

A set of Behaviours is defined in the agent to distinguish between different
environments and attention focuses. Basically, Behaviours are used to reduce
and delimit the knowledge the agent has to use to solve a problem. Therefore,
those methods, data, events or messages that are not related to the current
agent stage should not be considered. In this way, the agent’s efficiency in the
problem-solving process is improved. A Behaviour has a Name to identify itself.
A Goals Set is also associated to it, which may be used either as activation or
maintenance conditions (see Figure 2(a)). Lastly, a state indicating its current
activation situation. More than one Behaviour may be active at the same time.

2.3 Capabilities

The tasks that the agent knows how to fulfill are modeled as Capabilities. Ca-
pabilities are stored inside Behaviours and they model the agent’s answer to
certain events. A Capability is characterised by a Name that identifies it, its
trigger Event, an activation Condition and the Task that has to be executed
when the event arrives and the indicated condition is fulfilled (see Figure 2(b)).
The State of the Capability is also indicated. Only Capabilities belonging to
current active Behaviours are executed.

An event is any notification received by the agent informing it that something
that may be of interest has happened in the environment or inside the agent.
This may have caused the activation of a new Capability.

Figure 2: (a) Behaviours in agent-π, (b) Capabilities in agent-π.

All of the Capabilities of an active Behaviour will be in a state marked as
Active. When an event arrives, the state of the Capability changes to Relevant
and its activation condition is evaluated. If this condition is fulfilled, the state
passes to Applyable and the associated Task begins its execution. When this
Task ends, the Capability returns to Active again and it awaits the arrival of
new events. When a Behaviour becomes inactive, all of its Capabilities stop
their execution and change their state to inactive. It is assumed that all of the
Capabilities of an active Behaviour can be concurrently executed, so that the
system has to take the necessary steps to avoid deadlocks and inconsistencies
during their execution.

2.4 Task

The last component of the agent model is the Task. Tasks are the elements con-
taining the code associated to the agent’s Capabilities. One Task in execution

4



belongs to only one Capability and it will remain in execution until its comple-
tion or until the Capability is interrupted because the Behaviour it pertains to
is deactivated. No recovery or resumption method for interrupted Tasks has
been defined. On the other hand, the agent must have some kind of ”Safe Stop”
mechanism to prevent it from falling into inconsistent states.

3 Android Google: A new platform for mobile
devices

Android is a software stack for mobile devices which includes an operating sys-
tem, middleware and key applications. Developers can create applications for
the platform using the Android SDK [3]. Applications are written using the Java
programming language and run on Dalvik2, a custom virtual machine designed
for embedded use, which runs on top of a Linux kernel. The main components
of the Android operating system are:

• Applications: Android will ship with a set of core applications including
an email client, SMS program, calendar, maps, browser, contacts and
more. All applications are written using the Java programming language.
Every Android application runs on its own process, with its own instance
of the Dalvik virtual machine. Dalvik has been written so that a device
can run multiple VMs efficiently.

• Application Framework: Developers have full access to the same frame-
work APIs used by the core applications. The application architecture is
designed to simplify the reuse of components; any application can pub-
lish its capabilities and any other application may then make use of those
capabilities (subject to security constraints enforced by the framework).

• Libraries: Android includes a set of libraries used by various components
of the Android system. For example, some of the core libraries support
the playback and recording of many popular audio and video formats, and
also the core Web browser engine and SQLite for maintenance database.

• Android Runtime: Android includes a set of core libraries which pro-
vides most of the functionality for the Java programming language. An-
droid Runtime provides abstract components for creating applications.

• Linux Kernel: Android relies on Linux version 2.6 for core system ser-
vices such as security, memory management, process management, net-
work stack and driver model. The kernel also acts as an abstraction layer
between the hardware and the rest of the software stack.

There are four building blocks in an Android application: Activity , Intent
Receiver , Service and Content Provider . An application does not need to
use all of them, but they can be combined in any order to create an application.
Each application has a manifest file, called AndroidManifest.xml, which lists
all of the components used in the application. This is an XML file where you
declare the components of your application:

2Android Virtual Machine

5



• Activity: The most common of the four Android building blocks. An
activity is usually a single process with an interface in an application.
Each Activity is implemented as a single class that extends the Activity
base class. The Activity displays a user interface, composed of Views,
which responds to events.

• Intent Receiver: An event handler. It allows the reaction of the appli-
cation to events (called Intents) to be defined. Examples of these are when
the phone rings, when the data network is available or when it’s midnight.
Intent Receivers do not display a UI (User Interface), although they may
use notifications to alert the user if something interesting has happened.
The application does not have to be running for its Intent Receivers to be
called; the system will start the application, if necessary, when an Intent
Receiver is triggered.

• Service: A Service is a long-life code that runs without a UI. It is a
process running in the background without interaction with the user for
an indeterminate period of time. A good example of this is a media player
application, whereby the music playback itself should not be handled by an
activity because the user will expect the music to keep playing even after
navigating to a new screen. In this case, a Service will remain running in
the background to keep the music going.

• Content Provider: Applications can store their data in files, a database
or any other mechanism. The Content Provider, however, is useful for
sharing data with other Android applications. The Content Provider is
a class that implements a standard set of methods in order to let other
applications store and retrieve the type of data that is handled by that
Content Provider.

4 The Andromeda Platform

Andromeda (ANDROid eMbeddED Agent platform)[1, 2] is an agent platform
specifically oriented to embedded agents over the Android3 operating system.
The agents developed inside this platform are based on the agent-π meta-model.
Android can be seen as a software system specifically designed for mobile de-
vices which includes an operating system, a middleware and key applications.
Developers can create applications for the platform using the Android SDK.
Applications are written using the Java programming language and they run on
Dalvik (the Android Virtual Machine), a custom virtual machine designed for
embedded use, which runs on top of a Linux kernel.

The proposed Andromeda platform includes all the abstract concepts of
the agent-π meta-model. The implementation was done using the main API
components of Android (SDK 1.0). The correspondence between the Android
components and the main agent-π abstract concepts are explained a below.

3Android System, http://code.google.com/android/

6



4.1 Agent

The Agent class is designed to handle the arrival of events. Therefore an agent
has to consider the changes to its environment (this may be of interest to the
agent) to determine its future actions activating and deactivating the appropri-
ate Behaviours in response to any internal or external situation. In this way,
Agent class is implemented as one Android Service.

To implement the agent-π model, some methods of Service class have to be
overloaded. The onCreate() method allows agent variables to be initialised.
Then the onStart() method is executed, enabling the agent components. The
agent is executed until the user decides to stop its execution. At that moment,
the user employs the selfstop() or stopService() method, allowing the ef-
fective termination of the agent execution. Every agent component is stopped
and destroyed (Tasks, Capabilities and Behaviours).

The agent interface designed has several methods that allow the agent-π to
be implemented, but there are two methods that it is important to mention:
the init() method, where the user may write the code necessary to initialise
the agent, and the run() method, which activates roles that the agent has to
play (activate the Behaviours). The init() is executed within the Service’s
onStart(), which is called when the agent starts for first time. The Agent class
can also launch a UI (User Interface), one Activity, to interact with users and
to show its internal state and progress. The programming interface is shown in
Figure 3.

public class Agent extends Service {
private AID myAID;
private Goals mygoals;
private List<Behaviour> myListBehaviours;
. . .
public void init()
private void run()
public boolean changestate(Behaviour behaviour, boolean cond)
public void addbehav(Behaviour myBehaviour)
public void destroy()
protected void agentDestroy()
. . .

}

Figure 3: Agent interface of agent-π.

4.2 Behaviour

The Behaviour class works as a container of the Agent Capabilities and it can
group as many Capabilities as the user desires. All of them can be activated
and deactivated when events arrive. Behaviours are implemented by means
of an IntentReceiver class from the Android APIs. This base class receives
intents sent by events from the Android platform. An IntentReceiver has to be
dynamically registered to treat intents, using the registerReceiver() method.
The IntentReceiver will be running on the main agent thread. The Receiver will
be called when an intent arrives which matches the intents filters, i.e. bind an
intent to an object that is the receiver of the intent.

As the agent may play one or more roles at any moment, the Behaviour
class can activate new roles to register the respective handler (of intents). For

7



example, a role may be activated as a special Agent Behaviour when the phone
battery is low. This can be done by an IntentReceiver that receives the intent
LOW BATTERY.

The Behaviour interface designed has several methods, but two main meth-
ods are provided to add and remove the Capabilities: add(capability) and
remove(capability). When the user has to create a new Behaviour, the con-
structor method must be called, which supplies the Behaviour name and its
trigger Event as Behaviour(Name, Event). To illustrate this, Figure 4 shows
part of the programming interface implemented.

public class Behaviour extends IntentReceiver{
private List<Capability> myListCapability;
. . .

public void add(Capability mCapability)
public boolean remove(Capability mCapability)
public void activate()
public void deactivate()
. . .

}

Figure 4: Behaviour interface of agent-π.

4.3 Capabilities

Capabilities are characterised by their trigger Event, an activation Condition
and the Task that must be executed when an event arrives, and the indicated
condition that is fulfilled. The Capability is implemented by means of an In-
tentReceiver class from the Android APIs. This base class receives intents sent
from events in the Android platform, so that it is similar to Behaviours.

A Capability is always running an IntentReceiver. When an intent arrives
and the condition is fulfilled, the code in onReceiveIntent() method is con-
sidered to be a foreground process and will be kept running by the system to
manipulate the intent. It is at this moment that the Task is launched.

The Capability interface designed has one important method for matching
a Task to its corresponding Capability : this is the addTaskRun(task) method.
When the user has to create a new Capability the constructor method must be
called, supplying the Capability name and its trigger Event as Capability(Name,
Event). In Figure 5 part of the programming interface is shown.

public class Capability extends IntentReceiver{
private Condition condition;
private Boolean state;
. . .
public void activate()
public void deactivate()
public void setCondition(Condition condition)
public boolean addTaskRun(Task nametask)
. . .

}

Figure 5: Capability interface of agent-π.

8



4.4 Tasks

Now, Task class is one special process to run as an Android Service. To im-
plement the Task, some methods of Service class have to be overloaded. The
onCreate() method allows Task variables to be initialised when it is launched.
The onStart() method allows the user code to be executed, throughout a call
to a doing() method that has to be overloaded by the programmer. Now,
the main method of Task interface is doing(), where the user writes the Java
program to be executed (see the interface in Figure 6).

public class Task extends Service implements Runnable {
public MsgQueue outputQ
. . .
public void doing()
public synchronized void pause()
public synchronized void resume()
public void taskDestroy()
public final void send(Message msg)
public final Message receive(MessageTemplate pattern)
public final Message blkReceive(MessageTemplate pattern, long time)
. . .

}

Figure 6: Task interface of agent-π.

Finally, the intents are used to model theGoals that activate the Behaviours
and Events that allow the Tasks of a Capability to be executed. To manipulate
and store the agent Beliefs, the ContentProvider is used as a database. The
Communication between agents is implemented creating FIPA ACL messages.

Table 1 shows the Android blocks used for building components of the agent-
π model and other necessary components. Thereby this model inserts a new
layer in the Android system architecture[3]. This new layer, called Agent inter-
face, modifies the architecture, as seen in Figure 7.

Table 1: The Android components used in the agent-π model.
agent-π Components Android Components Overloaded methods

Agent Service onCreate(), onStart(), onDestroy()
Behaviour IntentReceiver registerReceiver(), onReceiveIntent()
Capability IntentReceiver registerReceiver(), onReceiveIntent()

Task Service onStart(), onDestroy()
Events Intents IntentFilter()
Believes Contentprovider –

ACL Communications http –

5 Example

An example of two agents talking by means of a chat session is used to show
the applicability of this proposal. So, a simplified Chat Session between two
agents that send and receive ACL messages is proposed. This simple example
is presented with academic goals, to explain and show how to use an agent
interface designed in Android platform only. This example does not attempt to
illustrate the interaction of a complex agent.

The implementation of the agent was done in an Android emulator, because
currently there are no real phones where applications can run. The first step

9



Figure 7: Agent interface in Android System Architecture.

of the design process is to identify the roles of the agents. As agents simply
send and receive information from each other, we model the agent with only
one Behaviour, which is called CHAT. A simple chat session has one Capability
where users send information whenever they want and another Capability which
awaits the arrival of a message. Therefore, two Capabilities are created: one to
transmit a message and the other to receive it (see Figure 8(a)).

Each agent Capability has the mission of sending or receiving messages. It
is necessary to remember that a Capability receives intents. When the intent
arrives and the condition is fulfilled, the Task is launched. The Capability
that sends messages is called SendMsg, and its Task, task Send, transmits the
information when users press the send button (see Figure 8(b)).

Figure 8: (a) Agent Model for chat session, (b) Capability SendMsg.

The Capability that receives messages is called ReceiveMsg and its Task,
task Receive, waits for the arrival of other agent messages. So, agents are ready
to begin the process of communication and the exchange of information in the
Chat. Messages will be displayed on the phone screen. Now, to program the
agent interface (for this preliminary implementation), proceed as explained be-
low:

• Create one Behaviour with name= CHAT.

10



• Create one Capability for sending messages, with name= SendMsg, and
the condition (intent), which wakes it up.

• Then add the Task (task Send) that permits the ACL message to be sent.

• Create another Capability for receiving messages, with name= ReceiveMsg,
and the condition (intent), which wakes it up.

• Then add the Task (task Receive) that permits the ACL message to be
received.

• Add these two Capabilities to the Behaviour.

• Add the Behaviour, using the addbehav() method. The agent is executed
and the messages will be displayed on the emulator screen (see Figure 9).

Figure 9: Chat in the emulator screen.

The program for implementing the agent which has been designed is shown
in Figure 11 and to illustrate the Java code that the user writes in the Task,
Figure 10 shows the program for sending Chat messages, the task: task Send.

public class task_Send extends Task {
public void doing() {

. . .
//create or get the id agent
AID agentReceiver = new AID();
agentReceiver.setName("AGENT TWO");
agentReceiver.addAddresses("192.168.1.105");

//Compose the ACL message to send another agent
Message msg = new Message(Message.INFORM);
msg.setContent(content);
msg.addReceiver(agentReceiver);
send(msg);

}

Figure 10: Task for send Chat messages.

6 Conclusions

A general agent model for building intelligent agents on the Android platform
has been presented. This model can be easily adapted to almost any platform

11



public class MyAgent extends Agent {
public void init(){

. . .
//Create one Behaviour
Behaviour myBehaviour= new Behaviour("CHAT");

//Create two capabilities and its condition trigger
Capability myCapabilityTX = new Capability("SendMsg");
Capability myCapabilityRX = new Capability("ReceiveMsg");

//Condition and intent trigger of send
Condition mycondSend = new Condition() {

@Override
public boolean expression(Intent intent) {

if (intent.getAction() == "Android.intent.action.MY_SENDMSG") {
return true;

}else { return false; }
. . .

//Set the conditions different of null
myCapabilityTX.setCondition(mycondSend);
myCapabilityRX.setCondition(mycondReceive);

//Create and add tasks that send and receive the chat messages
Task myTaskTX =new task_send;
myCapabilityTX.addTaskRun(myTaskTX);
Task myTaskRX =new task_Receive;
myCapabilityRX.addTaskRun(myTaskRX);

//Add the Capabilities to the Behaviour
myBehaviour.add(myCapabilityTX);
myBehaviour.add(myCapabilityRX);

//Add Behaviour the agent and execute it
addbehav(myBehaviour);

}

Figure 11: agent-π Agents Chat.

or architecture hardware/software. Moreover, the agent model has been im-
plemented and tested on the Android platform. The agent interface designed
allows embedded agents to be implemented according the requirements of the
user.

The use of the Android platform demonstrated the utility and probed the
feasibility of designing a platform-independent agent. The use of the proposed
model abstractions for agent-π agent reduces the gap between the theoretical
model and its implementation.

The embedded agent design achieves the functionality required of it. Fur-
thermore, the Android platform promises to be a new platform for implementing
novel agent models. This is because Java API is very similar to the Personal
Computer version, allowing an embedded agent-based approach to be imple-
mented with even more advanced mechanisms. This is a useful feature in Per-
vasive Computing. Additionally, as Android platform is a Linux system, there
is a high probability that the platform can be migrated to a range of different
devices.

As future work, the services that this first version of the agent can deliver
will be enriched and enhanced. The prototype has been developed using an em-
ulator for Android. The evaluation of the performance of the agent architecture
presented will be carried out when the first mobile phone using the Android
system is launched.

12



While this article was being written a Jade4 version for Android system was
developed. Though the authors have not carried out an in-depth evaluation
of Jade in the Android architecture, it must be stated that the agent model
described in this paper presents a conceptually different to JADEmodel, because
this model is wholly integrated with Android’s building block and JADE is not.

7 Acknowledgment

This work was partially supported by CONSOLIDER-INGENIO 2010 under
grant CSD2007-00022 and by the Spanish government and FEDER funds under
TIN2006-14630-C0301 project.

References

[1] J. Agüero, M. Rebollo, C. Carrascosa, and V. Julián. Does Android Dream
with Intelligent Agents? In International Symposium on Distributed Com-
puting and Artificial Intelligence 2008 (DCAI 2008), volume 50, ISBN:
978-3-540-85862-1, pages 194–204, Salamanca, Spain, 2008.

[2] J. Agüero, M. Rebollo, C. Carrascosa, and V. Julián. Towards on embedded
agent model for Android mobiles. In The Fifth Annual International Con-
ference on Mobile and Ubiquitous Systems: Computing, Networking and
Services (Mobiquitous 2008), volume CD Press, ISBN: 978-963-9799-21-9,
pages 1–4, Dublin, Ireland, 2008.

[3] Android. The Android Software Development Kit (SDK), July 2009.

[4] B. Bauer. UML Class Diagrams Revisited in the Context of Agent-Based
Systems. Proceedings Agent-Oriented Software Engineering, pages 101 –
118, 2002.

[5] J. Castro, M. Kolp, and J. Mylopoulos. A Requirements-Driven Develop-
ment Methodology. Conference on Advanced Information Systems Engi-
neering, pages 108 – 123, 2001.

[6] R. Cervenka and I. Trencansky. The Agent Modeling Language – AML, vol-
ume ISBN: 978-3-7643-8395-4. Whitestein Series in Software Agent Tech-
nologies and Autonomic Computing, 2007.

[7] D. J. Cook and S. K. Das. How smart are our environments? An updated
look at the state of the art. Pervasive Mob. Comput., 3(2):53–73, 2007.

[8] P. Davidsson and M. Boman. Distributed monitoring and control of office
buildings by embedded agents. Inf. Sci. Inf. Comput. Sci., 171(4):293–307,
2005.

[9] F. Doctor, H. Hagras, and V. Callaghan. A type-2 fuzzy embedded agent
to realise ambient intelligence in ubiquitous computing environments. Inf.
Sci. Inf. Comput. Sci., 171(4):309–334, 2005.

4http://jade.tilab.com/

13



[10] J. Gomez Sanz. Modelado de Sistemas Multi-Agente. Phd thesis, Universi-
dad Complutense de Madrid, Spain., 2002.

[11] H. Hagras, V. Callaghan, and M. Colley. Intelligent Embedded Agents.
Information Sciences, 171(4):289 – 292, 05 2005.

[12] E. Schoitsch and A. Skavhaug. Special: Embedded Intelligence. In ERCIM
NEWS. European Research Consortium for Informatic and Mathematics,
number 67, October 2006.

[13] M. Wooldridge and N. R. Jennings. Agent theories, architectures, and
languages: a survey. In ECAI-94: Proceedings of the workshop on agent
theories, architectures, and languages on Intelligent agents, pages 1–39,
New York, NY, USA, 1995. Springer-Verlag New York, Inc.

[14] F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing multiagent
systems: The GAIA methodology. ACM Trans. Softw. Eng. Methodol.,
12(3):317–370, 2003.

14


